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Free convection in vertical gaps 

By J. N. KOSTER AND U. MULLER 
Kernforschungszentrum Karlsruhe, Institut fur Reaktorbauelemente, Postfach 3640, 

7500 Karlsruhe 1 ,  Federal Republic of Germany 

(Received 16 April 1981 and in revised form 3 May 1982) 

Free convective;flow was investigated experimentally in a variety of slender vertical 
gaps of large horizontal extent. Temperature fields were visualized by holographic 
real-time interferometry, and local temperatures measured by thermocouples a t  the 
lower and upper boundaries of the gap as well as in the fluid. The critical Rayleigh 
number at the onset of convection was determined for different gap geometries (aspect 
ratios) and different thermal properties of the sidewalls and the fluid. For supercritical 
Rayleigh numbers, bounds of stability of steady-state two-dimensional convection 
were determined for transient and oscillatory states of the flow. The oscillatory flow 
is caused by an instability of the thermal boundary layers a t  the lower and upper 
boundaries, as evidenced by direct interferometric observation and by the measured 
period of oscillation depending on the Rayleigh number. The oscillations of the flow 
exhibit a periodic behaviour at the threshold from steady to  unsteady flow. However, 
the periodic character of the oscillations is superseded by stochastic features im- 
mediately beyond the threshold Rayleigh number. 

1. Introduction 
Since the study of Wooding (1960) free convective flow in slender vertical gaps, 

where one horizontal dimension is much smaller than the other, has been investigated 
in order to simulate convective flow through porous media. 

In  a fluid-saturated porous medium low-Reynolds-number flow of an incompressible 
fluid is described by a linear pressure-velocity relation, called Darcy’s law (Darcy 

( 1 )  

1856) : 

where v is the filtration velocity vector, V p  the pressure gradient, p the density, p 
the dynamic viscosity, K the permeability of the medium and g the acceleration due 
to gravity. Hele-Shaw (1898) developed an analogy between an isothermal two- 
dimensional flow in a porous medium and the motion of an isothermal fluid between 
two parallel plates separated by a distance d .  The mean velocity for the flow through 
a so-called Hele-Shaw cell is thus 

K 

Y 
v =  --(V P - P g ) ,  

2 2  

(2) 
u- 

v = - - ( V p - p g )  
12Y 

(Lamb 1975). The hydraulic analogy between viscous fluid motion in a porous medium 
and motion in a Hele-Shaw cell is rigorous for isothermal flow when an equivalent 
permeability K = &i2 is defined. The Hele-Shaw cell thus enables the experimentalist 
to simulate the flow through a porous medium (Bear 1972). 

However, when there are temperature variations in the liquid-solid system of the 
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porous medium the thermal interaction between the liquid and the solid surface is 
generally difficult to model. Therefore, schemes of averaging the thermal properties 
for the whole system were employed in the past in order to establish analytically 
treatable models. It has been suggested that convection in Hele-Shaw cells could be 
characterized by a single properly defined Rayleigh number. In  analogy to  convection 
in porous media, such a Rayleigh number is defined as 

RaHS = p g A T h K ( v K , ) - ' ,  (3) 

where p is the coefficient of thermal expansion, AT the temperature difference 
between bottom and top of the gap, h the height of the cell, v the kinematic viscosity 
and K ,  an average combined thermal diffusivity of the fluid and the solid sidewalls. 

Elder (1967a), Horne & O'Sullivan (1974, 1978) and Hartline & Lister (1977) each 
adopted different combinations of definitions for the permeability K and the average 
thermal diffusivity K,. 

Elder (1967a,b, 1968) gave a detailed theoretical analysis of various flow 
phenomena, which he also observed experimentally. Describing his results, Elder 
employed the average thermal diffusivity K ,  = k,(pc);', where k ,  is the thermal 
conductivity of the saturated medium and (pc), is the thermal capacity of the'fluid, 
and the permeability K = &ti2. Recently, Hartline & Lister (1977, 1978) carried out 
careful measurements of the critical Rayleigh number and the flow velocity of 
thermal convection in Hele-Shaw cells under supercritical conditions. They utilized 
the relation K ,  = ( k ,  E + k,( 1 -c))/(pc)f, where k,  and k,  are the thermal conductivities 
of the fluid and solid respectively, E = d/ Y and K = &Ed2 = d3/12 Y ,  where Y is the 
width of the Hele-Shaw cell (see figure 1).  

All the aforementioned authors claim that their experimental results (e.g. the onset 
of convection) are in reasonable agreement with the theoretical predictions of 
Lapwood (1948). According to his theory for a horizontal, infinitely wide, saturated 
porous layer between two horizontal impervious walls, convection starts a t  a critical 
Rayleigh number Ra,Hs = 4n2. However, when we tried to confirm the predictions of 
Lapwood and the aforementioned experimental results we found agreement or 
disagreement depending on the different combinations of wall material and fluid that 
we chose for the design of our Hele-Shaw cells. I n  order to clarify this phenomenon, 
further experimental investigations were carried out. In this study the Rayleigh 
number used is defined in the following way: 

Ra = P g ~ l T h ~ ( ~ ~ v ~ ) - ' ,  (4) 
where the fluid properties are indicated by the subscript f. This definition corresponds 
to that in the classical BBnard problem (BBnard 1900) of an infinitely extended hori- 
zontal fluid layer that is heated from below. The aspect ratio A = h / d  (see figure 1) 
is considered as a parameter. The results of our investigations are compared sub- 
sequently with recent theoretical findings obtained by other researchers (Kvernvold 
1979; Frick & Clever 1980, 1982; Frick 1981). 

Recent developments in convective-flow research have shown that several distinct 
phenomena occur during the transition from steady-state to  time-dependent stoch- 
astic convective flow. The time-dependent flows often show a periodic character a t  
first. But at higher Rayleigh numbers the flow may become quasi-periodic, followed 
by a stochastic behaviour, depending on the aspect ratios of the test volume. 
Investigations dealing with time-dependent flow in boxes of aspect ratios of around 
unity were reported by, for example, Ahlers & Behringer (1978a, b ) ,  Gollub & Benson 
(1978, 1980) and Dubois & Berg6 (1981). Time-dependent convective flows in 



Free convection in vertical gaps 43 1 

h 

Copper Glass 
Insulation I \ i ,ater jaikets 
(removable) ‘Thermocouple 

Hele-Shaw cell 

FIGURE 1. Cross-section of the Hele-Shaw cell and a typical interferogram of a Plexiglas-bounded 
cell illustrating the temperature field and corresponding streamlines of the flow. h is the height of 
the fluid-filled gap; d is the depth ; b is the length ; Y is the thickness of the cell. Aspect ratios : h / d  % 1 
and h / b  < 1. 

Hele-Shaw cells were considered theoretically by Kvernvold (1979) and Prick (1981). 
So far, however, no Hele-Shaw-cell experiments have been reported that give support 
to the theories of time-dependent convective flows. 

The experimental results reported here concern mainly three topics. The onset of 
convection is discussed in $3, the stability of two-dimensional convection in $4,  and 
the spatial and temporal structures of the time-dependent convective flow in $5. 

2. Experimental set-up and procedures 
Experiments were performed in various Hele-Shaw cells of common length 

b = 430 mm, variable height 18 < h/mm < 60 and variable gap width 
1 < d/mm < 3. A schematic sketch of such a cell is shown in figure 1. The 
Hele-Shaw cells were designed for the investigation of convective flow by interfero- 
metric techniques. The transparent sidewalls were made out of glass or Plexiglas of 
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different thicknesses. The gap width d plus the thickness of the two walls is called 
Y ,  as in Hartline & Lister (1977). Copper shims clamped between the transparent 
sidewalls formed the horizontal isothermal boundaries. Brass water jackets were 
clamped onto both the lower and upper copper shims. Water, held a t  two selected 
constant temperatures by thermostats within f 0.01 K ,  was circulated through the 
lower and upper jackets respectively. Owing to  the high heat capacity of copper and 
brass the temperature difference across the cell was even more accurately maintained. 
The temperature difference AT between top and bottom boundaries was measured 
a t  three different locations using chromel-alumel thermocouples embedded in the 
copper shims. The temperature along the length b was found constant to f 0005 K 
within the accuracy of measurement. Low conductivity polyvinyl chloride plastic 
endwalls were used to confine the fluid layer inside the large horizontal extent b of 
the test cell. The shims and brass jackets were imbedded in big blocks of polyvinyl 
chloride plastic. The frame of the box, made of low-conductivity material (Novotex), 
had on each side a second glass window to insulate the cell from convective 
disturbances in the ambient air. Additional big pieces of high-density extradense 
polystyrene foam of low thermal conductivity helped reduce the convective heat 
exchange with the surrounding air to a minimum. These foam pieces were temporarily 
removed when interferograms were taken. Water and silicone oils (M3 and M10) were 
used as test fluids, the pertinent properties of which are listed in table 1.  

As pointed out by Elder (1967a), Davis (1967) and Stork & Muller (1972), the axes 
of the two-dimensional roll cells always align themselves parallel to  the shorter 
horizontal dimension of the test cell. The test cell was placed in a holographic real-time 
interferometer (Koster 1980), with the optical path arranged parallel to the roll axes. 
With this arrangement and with infinite fringe adjustment (i.e. fringes very widely 
spaced) of the interferometer, the temperature fields, i.e. isotherms, of a section of 
the Hele-Shaw cell can be directly visualized and continuously recorded. A typical 
interferogram with a sketch of the streamlines of the convective flow in a Plexiglas- 
bounded Hele-Shaw cell is given in figure 2. Without incorporating correction terms, 
the equation correlating the number of fringes S in the interferogram and the 
temperature difference AT of (4) is 

- 

d d n  
A d T  

S = - - A T  

(Hauf & Grigull 1970), where A is the wavelength of ,the monochromatic light source 
and d n / d T  the temperature dependence of the refractive index n. 

Special care must be taken when optical measuring techniques are used to 
study convective flow in Plexiglas boxes (Koster 1980). Plexiglas has, in contrast 
to glass, a refractive index n that  is strongly dependent on the temperature, 
i.e. d n / d T  = - 1-08 x K-l (while for glass d n / d T  = -59 x K-l; for 
water d n / d T =  - 0 9 8 ~  K-l; and for silicone oil M3 and M i 0  
d n / d T  = -4.17 x K-I). Therefore, the number S of fringes obtained in a 
convection box bounded by Plexiglas walls is proportional to the composite cell 
thickness Y ,  instead of the thickness d of the fluid layer only as shown in ( 5 ) .  The 
temperature dependence d n / d T  of the refractive index must then be integrated across 
the thickness Y along the optical path. In this way the interferograms obtained 
actually contain information on the temperature fields of both the fluid layer and 
the walls. I n  the high-aspect-ratio Hele-Shaw cells discussed here, the convective flow 
imposed its temperature field on the Plexiglas walls, which was visualized in the form 
of additional fringes. These additional fringes allowed a very accurate measurement 
of the onset of convective flow, since the fluid integration length d was not long enough 
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FIQURE 2 .  Typical interferogram and corresponding schematic streamline of convective flow 
indicating the observed wavenumber. Numbers indicate location of thermocouples in the gap : 
1, location near upward flow; 2, location near downward flow. Dashed lines indicate visualiza- 
tion boundaries. 

to generate even one single fringe a t  the critical temperature difference A% (cf. (5)) .  
On the other hand, the presence of additional fringes from the sidewalls means that 
time-dependent flow phenomena cannot be effectively visualized a t  high Rayleigh 
numbers. Furthermore, Plexiglas absorbs fluid unevenly, causing non-uniform local 
changes of its optical properties. All optical properties of Plexiglas were taken into 
account during the experiments and in the interpretation of the results. It was also 
possible to evaluate the information on heat transfer in the cell from such 
interferograms (Koster 1982). 

The fringe contribution of the sidewalls is negligible when glass is used. Then, 
interferograms show solely phenomena of the fluid layer. With the sensitivity of the 
present interferometer set-up the interferometric determination of the onset of 
convection in a glass box of small gap width d is limited to low aspect ratio h / d .  

Because of the difficulties in determining an integral value of d n / d T  to evaluate 
AT in (5), the temperature difference across the layer was measured by thermocouples. 
Since cellular convection is inhibited by lateral walls (Catton & Edwards 1967 ; Prick 
& Clever 1982), the critical temperature difference for the onset of convection is high 
for boxes of high aspect ratio and low gap width. This is especially true for Hele-Shaw 
cells with d x 1 mm. For example, the critical temperature difference was 
ATc = 6.1 K in a Plexiglas box of aspect ratio h/d  = 20.2 (d = 1-05 mm). With the 
high controllability of the thermostats ( A T  < 0.005 K), the measuring accuracy for 
the critical temperature difference is assumed to  be better than kO.2 K, which is 
indicated by the size of the symbols used in figure 3. This is the overall accuracy for 
large aspect ratio h/d in combination with a small gap width d ( x 1 mm), or low aspect 
ratio with a large gap width d (x 3 mm), taking into account the interferometer 
sensitivity. 

Another peculiarity of Plexiglas that has to be considered when investigating 
convection in Hele-Shaw cells is its low thermal diffusivity K compared with that of 
the fluids used. For example, for a height h = 30 mm the thermal diffusion time in 
Plexiglas is h2/K, x 4 h, and in water h2/Kf x 3 h. As a quasi-steady temperature 
increase had to be matched closely, the heating rate applied to the layer was carefully 
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chosen according to these diffusion times. Generally, the temperature difference was 
adjusted about every 6 h by 01  K a t  a feasible minimal heating rate of about 
001 K/min. Consequently the experiments in which the marginal state was 
approached from below were extremely lengthy, requiring up to 40 days for the 
collection of the whole set of experimental data shown in figure 3. 

In  Hele-Shaw cells the very large contact area of the small fluid volume and the 
low conductivity sidewalls have even more implications on quasi-steady heating 
conditions. When a slight transient heating rate is applied to the bottom of the cell 
the temperature propagates significantly faster through the fluid than through the 
Plexiglas walls, causing heat transfer between the fluid and the Plexiglas. For an 
experimental simulation of the ideal condition of adiabatic sidewalls, the temperature 
profile of the convection layer would have to be realized in the Plexiglas in order to 
generate local thermal equilibrium at the wall-liquid interface. In  the experimental 
determination of the marginal state of onset of convection, the relaxation times for 
achieving the required local thermal equilibrium are different depending on whether 
the marginal state is approached from subcritical or supercritical Rayleigh numbers. 
Owing to the faster convective heat transfer and the shorter transverse diffusion time 
( Y - o ! ) ~ / ~ K ,  (which is, for example, 5.5 min for 6 mm thick Plexiglas) the thermal 
relaxation time is considerably smaller for the fluid. I n  experiments these circum- 
stances can result in different measured values of the critical Rayleigh number, as 
will be discussed in $3. 

In  Hele-Shaw cells bounded by high-conductivity glass walls with h2/Kf >> h 2 / K , ,  
the propagation of the temperature is much faster in the glass walls than in the fluid. 
Thus heat is normally transferred through the glass walls into the fluid, and the 
temperature profile in the walls is maintained practically linear a t  any given time 
during slight transient heating processes. Since the condition (3)2/~f 4 h 2 / K ,  holds, 
a quasi-steady heating rate can be achieved in these cells more easily than in Plexiglas 
cells. 

Time-dependent convective-flow phenomena have been studied interferometrically 
in a Hele-Shaw cell of geometrical aspect ratios h / b / d  = 016/1/0007 (h/d = 23) and 
Y/d = 4.9 (d = 3.05 mm) bounded by Plexiglas walls. Because of the optical properties 
of Plexiglas discussed above, visual information about convective processes in time 
intervals smaller than ( Y - d ) 2 / 4 ~ ,  is suppressed. Therefore two thermocouples 
0.25mm thick were inserted into the fluid (see figure 2) in order to  measure 
time-dependent phenomena in the fluid (water). One thermocouple projected about 
2 mm into the fluid as the sensor and the other was embedded in the copper shims 
along the same vertical axis. The close mounting of the reference thermocouple was 
chosen to minimize the d.c. offset of the thermocouple signal. The time-dependent 
signals were recorded on tape for as long as 12 h a t  a fixed Rayleigh number. The 
frequency spectra of those signals were obtained by a digital fast Fourier analysis 
of 8192 samples or less; for details see Koster (1980). Frequencies with discrete power 
could be determined with an accuracy of k 2 x Hz, depending on the Nyquist 
frequency. The centre-frequency of bandpass noise was determined indirectly with 
the half-width a t  about & of maximum power. The accuracy of this determination 
depends on the shape of the noise spectrum, but is considered to be k Af = lop3 Hz. 
The first-order error of the determination of the dimensionless period is 
A7 = ( K / h 2 )  (l/f) ( A f / f l ,  which assumes the values f A7 = 8 x lop5 at  the first observed 
bandpass noise and +_ A7 = 3.3 x lop5 a t  Ra* = 3-2 respectively. This error is smaller 
than the symbol size in the logarithmic plot of figure 7 .  Additional errors, which are 
not quantified, may be related to the development of the flow in the finite cavity. 

A second, similarly arranged pair of thermocouples was mounted a t  a distance of 
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sidewall 

/ 
I i 

I 
1 1 0 2  

Aspect ratio A 

FIGURE 3. Critical Rayleigh number versus aspect ratio A = h/d for different gap widths d,  different 
materials of the sidewalls and different fluids. Experimental results are indicated by symbols 
explained in table 2. The theoretical results of Hartline & Lister (1977) and Frick & Clever (1980) 
are displayed by dash and dash-dotted lines. 

60 mm to the side of the first set, so that the spacing between the two pairs of 
thermocouples was less than the height h = 70 mm of the test cell. This spacing is 
slightly smaller than half the wavelength of the convective rolls of critical 
wavenum ber . 

3. Onset of convection 
The onset of convection in the fluid layer within the gap was determined by 

increasing and/or decreasing the temperatures a t  the lower and/or upper boundaries 
of the test cell in small steps and by simultaneously observing changes in the fringe 
pattern of the real-time interferograms. The marginal state was approached 
repeatedly by increasing the temperature difference AT between bottom and top of 
the layer starting from the state of pure heat conduction, and by decreasing AT 
starting from a state of slow convective motion. The onset of convection was defined 
when the parallel fringe pattern of the state of pure heat conduction was slightly 
deformed to a wavy shape indicating the appearance of vertical flow components and 
the development of a regular pattern of wavenumbers. The temperature differences 
applied to the cell at these states were plotted versus developing wavenumbers. The 
minimum of the envelope to the experimental data allows an accurate determination 
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of the critical Rayleigh number and critical wavenumber in the Hele-Shaw cells. 
When the temperature difference AT was reduced, the termination of convective flow 
was defined when a patt,ern of horizontal parallel fringes reappeared in the 
interferogram. 

The critical Rayleigh numbers evaluated in this way are displayed as a function 
of the aspect ratio A = h/d in figure 3, in which the experimentally determined values 
arc indicated by the different symbols. The experimental errors remain within the 
size of each of the symbols, which corresponds to  an accuracy of f 0 2  K of the 
temperature measurements (see $2). The theoretical predictions of Frick & Clever 
(1980) are indicated by the dashed and dash-dotted curves. These curves describe the 
onset of convection for either perfectly conducting or adiabatic sidewalls. The theory 
predicts that for A > 10 the critical Rayleigh number varies as Ra az A4 or Ra cc A2 
for perfectly conducting or adiabatic sidewalls respectively. In  the experiments, these 
two ideal situations, namely the perfectly conducting and adiabatic sidewalls, can 
only be approximated by choosing appropriate combinations of the thermal properties 
of the fluid and the sidewall material. 

The value of the ratio of the thermal conductivities of the wall material to the fluid 
gives an indication of the closeness of the actual vertical boundary condition to those 
of the ideal cases. The different combinations of wall material and fluid covered in 
the experiments are described in table 2. The combination of high-conductivity glass 
and low-conductivity silicone oil may be considered to provide a reasonable simulation 
of the ideal case of perfectly conducting boundaries. This is evidenced by the close 
agreement between the experimental values of the critical Rayleigh number for this 
case and the theoretical predictions for perfectly conducting sidewalls. The 
combination of water, which has a higher thermal conductivity than silicone oil, as 
the test fluid and glass plates as the sidewalls yields values of the critical Rayleigh 
number lower than those for the case of silicone oil and glass, but higher than those 
for the case of water and Plexiglas. The Plexiglas used as the wall material provides 
insulation while allowing flow visualization. The values of the critical Rayleigh 
number for this case are found to be closer to the adiabatic lower bound given by 
the theory of Frick & Clever (1980). 

From theoretical considerations i t  is to  be expected that the onset of convection 
does not exhibit hysteresis effects ; i.e. the principle of exchange of stabilities should 
apply. In  the experiments using glass sidewalls the critical Rayleigh numbers were 
found, within experimental error, to be independent of the way the onset of 
convection was determined ; whether by quasi-steady increase or decrease of the 
temperature difference AT. I n  the experiments with Plexiglas walls, however, owing 
to the thermal interaction of the Plexiglas walls and the water discussed in $2, 
differences of about 30 % were observed in the experimentally determined critical 
Rayleigh numbers, depending on whether the marginal state was approached from 
below or from above. 

For comparison, the critical Rayleigh number according to the model of Hartline 
& Lister (1977) for one special value of E = d /  Y is also shown in figure 3. They used 
a Rayleigh number 

According to this definition the following correlation between (4) and (6) should hold : 

Ra, = 47r2-- - , 
d YKm(k)' K~ d (7)  
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where the factor 4n2 is the value for the critical Rayleigh number Ra,HL as calculated 
for a porous medium (Lapwood 1948). The slope of the curve corresponding to  (7)  
indicates that  only those cases in which adiabatic walls are approximated in the 
experiment can be reasonably described by this equation. 

The values of critical Rayleigh number RaFL, (6), calculated with the measured 
critical temperature difference AT,, are displayed in table 2. If the Rayleigh number 
of Hartline & Lister should be applicable in general, the critical value Ra,HL would 
have to be 4n2 for all cases investigated. However, this is only true for those 
arrangements of the Hele-Shaw cells that correspond to the experimental set-up 
employed by Hartline & Lister in their experiments. Discrepancies exist for the other 
cases of arrangements of Hele-Shaw cells. For example, when the thickness of the 
Plexiglas windows were increased to 12 mm, no substantial difference in the critical 
temperature difference was found, provided that the aspect ratio h / d  and the gap 
width d were the same. According to (6), however, the critical temperature difference 
should be higher as RaFL K ATJY. 

The results of our experimental investigation were as expected, since i t  was 
observed in other investigations that lowering the heat conductivity of the bounding 
walls reduces the critical Rayleigh number (see e.g. Sparrow, Goldstein & Jonsson 
1964). Thus the experimental critical Rayleigh numbers obtained with materials of 
finite heat conductivity will have as upper or lower bounds the ideal cases of either 
perfectly conducting or adiabatic sidewalls considered in the theory of Frick & Clever 
(1980). 

4. Stability of two-dimensional convection 
The stability of a free convective flow is usually described by stability diagrams, 

in which stable and unstable states are separated by bounding curves of marginal 
stability relating the Rayleigh numbers to the wavenumbers. The validity of the 
Hele-Shaw approximation of convection in porous media a t  supercritical Rayleigh 
number has been discussed by Frick & Clever (1980). 

Kvernvold (1979), Frick & Clever (1980) and Frick (1981) have calculated stability 
diagrams for finite-amplitude two-dimensional convection in Hele-Shaw cells. Their 
theoretical findings are presented in figure 4 together with our experimental results. 
I n  the graph of figure 4 the different states of the fluid flow are characterized by the 
ratio RalRa, of the actual Rayleigh number to the critical Rayleigh number, and 
the ratio a/a, of the actual wavenumber to its critical value. From an experimental 
point of view, this way of plotting the results removes in part the influence of the 
thermal properties of the sidewalls and thus presents the data in a more general form. 
The dash-dotted curve of marginal stability separates the range of convection from 
states of pure heat conduction. According to the theory of Eckhaus (1965), two- 
dimensional finite-amplitude convection, whose wavenumbers fall in the sidebands 
of the amplified spectrum of the linearized stability theory, is unstable to other 
two-dimensional disturbances of wavenumbers close to  the critical value. The limit 
line of the so-called Eckhaus instability is indicated in figure 4 by the solid lines. 
Oscillatory convective flow is to be expected for supercritical Rayleigh numbers 
beyond the dashed curve for oscillatory instability. According to these predictions, 
stable steady two-dimensional convection can only occur within the range of 
Rayleigh number and wavenumber ratios bounded by the solid and the dashed curves 
in the graph. 

I n  order to  check these predictions, several experiments were carried out employing 
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FIGURE 4. Stability diagram. Normalized Rayleigh numbers versus normalized wavenumbers. 
Experiments are performed in a Hele-Shaw cell with Plexiglas sidewalls and water as the test fluid. 
Dimensions of the cell: h l d  = 41.0, Yld = 13, hlb  = 0095. Range of the variation of the Prandtl 
number: 5.00 < Pr < 7.37. Theoretical results of the works of Kvernvold (1979) and Frick (1981) 
on the Eckhaus and oscillatory instabilities are indicated by the solid (-) and dashed (---) curves 
respectively ; neutral curve for onset of convection. Experimental results are indicated by 
symbols: 0 ,  stable steady states established for increasing RalRa,; A, stable steady states for 
decreasing RalRa,; A, transient states; + , oscillatory states. 

one special Hele-Shaw cell that had the geometrical dimensions h/d = 41.0, 
h / b  = 0.095 and Y / d  = 13. The sidewalls consisted of Plexiglas plates of 6 mm 
thickness and the gap of 1 mm width was filled with water. In  a first extensive 
experiment,t starting from critical conditions - illustrated by the row of circular 
symbols in the left portion of figure 4 -the temperature difference between the lower 
and upper boundaries of the layer was increased in a quasi-steady way similar to the 
procedure described in $3.  It was observed that, during the quasi-steady heating, 
adjacent convective roll cells usually had slightly different wavenumbers. Never- 
theless, without changing the mean wavenumber, the flow maintained stable steady 
states up to Ra/Ra, 10. On exceeding this value, non-steady oscillatory pheno- 
mena were first observed close to the lower boundary of the apparatus. When the 
Rayleigh number was slightly increased, similar unsteady phenomena also occurred 
at the upper boundary. This small shift in the Rayleigh numbers can be attributed 
to slightly different local thermophysical properties of the fluid near the lower and 
upper boundaries owing to the temperature variation across the layer. The oscillatory 
phenomena increased in intensity and frequency of occurrence when the Rayleigh 

t The time period for the different experiments reported here were between 20 and 25 days each. 
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number was increased further. In  the graph of figure 4, the conditions where oscilla- 
tory flow was observed are marked by crosses. The flow oscillations vanished without 
a pronounced hysteresis effect when the Rayleigh numbers were reduced below the 
value RalRa ,  = 10. However, before a hysteresis effect for the transition from 
steady-state flow to oscillatory flow and then back to steady-state flow can be 
excluded, more careful experiments will have to be performed. More details about 
the character of the oscillatory flow are presented in $5. 

A comparison between the experimental findings and the theoretical predictions 
shows that oscillatory states are found to occur just above the bounding curve for 
oscillatory instability. This can be regarded as qualitative agreement between 
experiment and theory. On the other hand, it is surprising to note that steady-state 
convection was observed in the range of Rayleigh numbers between the curve of 
Eckhaus and the curve of oscillatory instability. According to  the stability calculations 
of Kvernvold (1979) and Frick (1981) one would have expected that in this unstable 
range transient states of convection should occur, shifting the wavenumbers of the 
cell to higher stable values. This discrepancy may be explained by the following 
reasoning. As briefly outlined in $3,  i t  has been repeatedly observed that the 
temperature field of the fluid flow is stored in the Plexiglas walls (Koster 1980). This 
stored temperature profile reduces disturbances in the flow that could otherwise have 
changed the wavenumber during the observation and measuring time. 

I n  a second experiment, the stability of steady-state convection flows of large 
wavenumbers (i.e. small cell sizes) was investigated a t  very high supercritical 
Rayleigh numbers. The results are represented by circular symbols in the middle and 
upper portion of figure 4. Starting from an isothermal fluid layer, a sudden 
temperature increase corresponding to a Rayleigh number RalRa ,  z 9.4 was applied 
at the lower boundary of the fluid layer. By the transient heating a whole set of 
convection cells of different sizes were generated initially in the fluid layer. The cells 
gradually adjusted themselves to a mean size. After about one diffusion time 
t, = h 2 / q ,  the wavenumbers of these cells were found to be in the range 
3.1 < a/a, < 3.4. The wavenumbers of steady flow after a stepwise temperature 
increase are larger than the critical wavenumber a, and conform to the findings of 
Elder (1968). Corresponding phenomena were observed by Koschmieder (1969) in 
fluid layers of large horizontal extent. 

When the Rayleigh number was then gradually increased to higher Rayleigh 
numbers, the steady-state convective flow in the range 9.4 < Ra/Ra ,  < 16 maintained 
essentially the initial pattern, i.e. the initial wavenumber. At Rayleigh numbers 
RalRa ,  > 16, time-dependent wave-like perturbations were first observed to occur 
near the lower heated boundary, and, a t  a slightly increased Rayleigh number, the 
analogous phenomena were found near the upper cooled boundary. Crosses in the 
upper portion of figure 4 mark the fluctuating cellular flow and indicate an increase 
in wavenumber bandwidth with increasing Rayleigh number. The time-dependent 
events represent a change of the wavenumbers of some convection cells to smaller 
or larger values at the expense of their neighbouring cells caused by the strongly 
unstable boundary layers. But the basic convection mode, which circulates fluid from 
the bottom to the top of the cell and vice versa, continues to dominate the flow. 
Similar phenomena have also been observed by Krishnamurti (1973) in fluid layers 
of large horizontal extent. 

Although the transition from steady convection flows to unsteady flow at  very high 
Rayleigh numbers and very small cell sizes is to be expected, the threshold Rayleigh 
number obtained from the experiments is considerably smaller than an extrapolation 



442 J .  N .  Koster and U.  Muller 

of the curve of oscillatory instability in the graph would predict. Further investigations 
are needed to clarify whether the extrapolation of the theoretical results is valid, and 
whether the relatively early onset of oscillatory flow in the experiment may have been 
caused by experimental deficiencies, e.g. end effects (finite length of the cell) within 
the Hele-Shaw cell. 

A third experiment of long duration was again started by a sudden stepwise 
increase of the temperature at the lower boundary of the layer. Then, beginning a t  
RalRa, = 10.3, the Rayleigh number was decreased quasi-steadily. The observed 
wavenumbers are represented by triangular symbols in the middle and lower portion 
of figure 4. As in the second experiment, a set of convection cells of different sizes 
developed first. At the cessation of the fast transient process the wavenumbers of two 
of the simultaneously visualized convection cells were first found to be outside the 
bounding curve of the Eckhaus instability. In the following slow transient process 
lasting for about one diffusion time t ,  = h2/Kf,  the wavenumbers of these two cells 
shifted to higher values and into the range of stable steady convection. This event 
is indicated in figure 4 by the two solid triangles and the arrow. The experiment was 
then continued by quasi-steadily reducing the temperature difference between 
bottom and top of the fluid layer. Steady-state convection was found for all Rayleigh 
numbers down to a value RalRa, = 3.5. At this value one of the largest wavenumbers 
observed in the Hele-Shaw cell touched the bounding line of the Eckhaus instability. 
When the Rayleigh number was decreased further, the fluid system in the Hele-Shaw 
cell reacted by reducing the wavenumbers of all convection cells. This occurred in 
a transient process during which several (one or more) convection cells in the fluid 
system were destroyed. This phenomenon was repeated in two more steps, when the 
Rayleigh number was reduced even further, until finally the critical conditions 
RalRa, = 1 and a/u, = 1 were reached. The stepwise reductions in the wavenumbers 
are indicated in figure 4 by arrows on the right branch of the curve of Eckhaus 
instability. More details of the change of wavenumbers can be seen from the 
interferograms in figure 5. It can be recognized that the cell sizes increase distinctly 
during each of the three steps. 

The stepwise reduction of the wavenumbers in the range of Rayleigh numbers 
3.5 c Ra/Ra, < 1 is considered to be essentially a confirmation of the validity of the 
curve of Eckhaus instability in this range. One may argue that the experimental 
points meet the theoretical curve closely only for RalRa, = 3.5, and are otherwise 
found remote from it. However, this effect can be attributed to the finite horizontal 
length of the Hele-Shaw cell, in which only a finite number of convection cells can 
be established for a particular Rayleigh number. End effects of the vertical sidewalls 
were found to quantize the wavenumbers within the system for certain intervals of 
Rayleigh numbers. Quantization has been observed by Berg6 (1979) and Maurer & 
Libchaber (1979) in their experiments on BBnard convection. In  addition, rolls of 
various wavenumbers coexisting a t  a particular Rayleigh number in the Hele-Shaw 
cell cause inhomogeneities of the flow pattern and the temperature fields (heat 
transfer). These perturbations may initiate the change of wavenumbers at Rayleigh 
numbers different from the marginal values of the Eckhaus-instability line. It is 
therefore reasonable to assume that, if the Hele-Shaw cell had been of infinite extent 
and if the rolls had equal size, then the change of the wavenumbers would have 
occurred along the theoretical curve of the Eckhaus instability. 
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FIGURE 5. Interferograms illustrating the change of the mean wavenumber L% in the Hele-Shaw cell 
occurring close to the curve of Eckhaus instability for decreasing Rayleigh numbers given in figure 
4. 

5. Time-dependent flow 
In  this section the oscillatory convective flow a t  high Rayleigh numbers will be 

discussed in more detail. The Hele-Shaw cell with low-conductivity Plexiglas 
sidewalls used for these investigations is described in $2. 

The oscillations of the flow were found to set in a t  a well-defined Rayleigh number 
Raosc = 5-96 x lo6. Increasing and decreasing the temperature difference across this 
threshold did not reveal a hysteresis. Wavy perturbations were observed to occur 
repeatedly close to  the heated lower and cooled upper boundaries of the layer, which 
is a characteristic feature of the oscillatory convective flow in a Hele-Shaw cell. The 
chronological development of a typical perturbation is shown in figure 6 by a sequence 
of interferograms of one cell section close to the lower boundary. These perturbations, 
which can also be interpreted as small vortices, are always generated near the 
stagnation point of the downflowing (upflowing) convective jet (figure 6 a ) ,  where the 
thickness of the thermal boundary layer was smallest. An estimate of the local 
boundary-layer thickness 6 can be obtained from the visualized height of the vortices. 
After generation, these vortices convect sidewards and away from the horizontal 
boundary by the main flow of the convection cell. Moving along the horizontal 
boundaries, the vortices grow in size. When the Rayleigh number is increased, the 
region of occurrence of such vortices becomes smaller as the boundary-layer thickness 
6 is reduced, until finally i t  is of the same order as the gap width: 6 z d. Simul- 
taneously the frequency of vortex generation increases, and several vortices may 
coexist momentarily in the horizontal boundary layers of a single convection cell. 

It was estimated from the observation of the real-time interferograms that the 
extent of the perturbations was always limited to areas of densely packed fringes, 
i.e. to the thermal boundary layer. This suggests that the onset of oscillatory flow 
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FIGURE 6. Interferograms illustrating the time-dependent perturbation of the thermal boundary 
layer near the lower horizontal wall. Experimental data:  RalRa, = 11.8; hld = 66.5; Y l d  = 25; 
lifetime of an individual perturbation, 240 s .  

could be explained by an instability of the thermal boundary layer. For infinitely 
extended horizontal fluid layers heated from below, this idea was first expressed by 
Howard (1964) and repeatedly experimentally confirmed, e.g., by Busse & Whitehead 
(1974). An interferometric confirmation was first given by Chu & Goldstein (1973). 

To the best of our knowledge, the idea that boundary-layer instabilities may be 
responsible for the fluctuations in the free-convection gap flow was first expressed 
by Caltagirone, Cloupeau & Combarnous (1971). Horne & O’Sullivan (1978) discussed 
the same concept of boundary-layer instability for porous-media flow, and studied 
the phenomenon numerically. 

The idea of an instability of the temperature boundary layer causing the un- 
steadiness of the Hele-Shaw flow can be substantiated by similarity arguments 
analogous to those first applied by Howard (1964). Proceeding on the assumptions 
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that, a t  the high Rayleigh numbers under consideration, thermal boundary layers 
of thickness 6 have developed along the horizontal walls, and that the thickness 6 
is still much larger than the gap width d ,  one may postulate that the analogy of 
Hele-Shaw flow to the flow in porous media even holds for the region of the 
boundary layer (Elder 1967a, b) .  Based on these ideas, a properly defined Rayleigh 
number for the region of this boundary layer would be, according to (3 ) ,  
RaHS(6) = P g K ( K ,  w)-~G+AT. Accepting the model that  this boundary layer becomes 
unstable for values of RaHS(6) larger than a critical value, say (RaHS(6)),  = 27, the 
corresponding critical value for convection in a saturated porous medium (Lapwood 
1948), we conclude, from the definition of RaHS(6),  that the thickness of a stable 
boundary layer satisfies 6 cc AT-'. As the growth of the thermal boundary layer a t  
the horizontal walls results from heat conduction only, similarity considerations 
based on the heat-conduction equation lead to  the following relation between the 
diffusion time for the temperature and the boundary-layer thickness: t, cc 62. A 
combination of these two relations and a substitution of AT by the Rayleigh number 
defined in (4) readily gives 

where 7 is defined as the dimensionless period of oscillation 7 = ( K f / h 2 )  t .  
In  order to quantify the interferometric observations of the flow fluctuations and 

to verify the idea of the unstable boundary layer, the temperature signals measured 
by sensors 1 and 2 (figure 2)  were analysed. Hence 8192 digitized samples, from 
recordings of 5.8 h, were used to calculate the frequency spectra by fast Fourier 
transforms. The spectra showed discrete frequencies close to the threshold of 
oscillatory flow and bandpass noise a t  higher Rayleigh numbers. The evaluated 
frequency f was made dimensionless with the diffusion time h2/Kf of the fluid. The 
results were plotted in the form of the dimensionless period versus the normalized 
Rayleigh number Ra*, which is defined as the ratio of the actual Rayleigh number 
to the Rayleigh number Ra,,, at  the onset of the oscillations: Ra* = Ra/Ra,,,. 

Figure 7 displays the experimental results and the piecewise least-square-fit curves 
for the measured centre-frequencies of the various regions for the purpose of 
comparing the results with the existing theories. For the various regions the following 
correlation formulas were found : 

7 cc Ra-2, (8) 

7 = 4.8 x 10-3(Ra*)-1'4 (1 < Ra* < 3.2), (9a) 

7 = 5 . 4 ~  10-3(Ra*)-2'0 (1  < Ra* < 1.5) (I), (9b)  

7 = 3.4 x 10-3(Ra*)-1'0 (2.3 < Ra* < 3.2) (11). (9c) 

It is seen from figure 7 that  at the beginning of the oscillations the period satisfies 
(8). The correlation coefficient was found closest t o  1 when all the measuring points 
in the range 1 < Ra* < 1.5 were taken into account. Also, in this range the smallest 
visualized thickness of the temperature boundary layer 6 is still larger than the gap 
width d. The range I1 is defined somewhat arbitrarily by the experimental observation 
that the secondary vortices become so small that they can no longer be visualized 
by the interferometer. The time-dependent flow is then detected solely from 
thermocouple readouts. The interferogram shows a steady temperature field of the 
basic convective mode. 

Stability arguments can also be used to explain the change of power of the 
experimental 7(Ra*) correlation for high Rayleigh numbers. I n  this case the thickness 
6 of the boundary layer is comparable to or even smaller than the gap width d. Then 
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FIGURE 7. Non-dimensional periods of oscillation 7 versus normalized Rayleigh number Ru* = 
Ru/Ra,,,. Experiments are performed in a Hele-Shaw cell with Plexiglas sidewalls and water as the 
test fluid. Dimensions of the cell: h/d = 23.0; Y/d  = 49 ;  h / b  = 016. Curves give least-square fits 
of the experimental data: ---, fitted curve to all experimental data;  -, fitted curve to the 
experimental data in sub-domains of Rayleigh numbers indicated by I and 11. 

the Hele-Shaw analogy to porous media no longer applies. For an assessment of the 
stability of the boundary layer it is reasonable to  use now the classical definition of 
the Rayleigh number, given by (4) for the boundary-layer thickness 6, i.e. Ra a a3. 
The same considerations as mentioned above then lead to the relation 

7 a Rap:, (10) 

which was first derived in this form by Howard (1964). This relation holds for 
infinitely extended layers according to Busse & Whitehead (1974) and for a confined 
box according to Dubois & Berg6 (1981). Although experimental results are only 
available for Ra* < 3.2 i t  seems that the asymptotic behaviour of the periods of 
oscillations is qualitatively described by these considerations. 

In  their numerical investigations on convective flow in saturated porous media, 
Horne & O'Sullivan (1978) derived the law 7 K R~2-l'~ in a range of Rayleigh numbers 
Ra* similar to that of our investigation. They associated the departure from the 
asymptotic relation T oc Ra+ with an additional triggering mechanism by disturb- 
ances previously discharged from the thermal boundary layer and recirculated to 
their origin by the mean flow of the cell. I n  the present investigation, no evidence 
for triggering of inetabilities was found, and thus this argument is not used to explain 
the power change of the T(Ru) correlation. 

Next, the frequency spectra of the flow oscillations will be discussed and related 
to visual observations of the interferograms. Some typical temperature signals from 
chart recorders and the corresponding power spectra (8192 samples) are displayed 
in figure 8. The temperatures were measured by thermocouples, whose positions in 
the flow are described in $2 and figure 2 .  Several intervals of the signals, recorded 
at constant Rayleigh number, were evaluated with 2048, 4096 and 8192 samples. A 
large number of spectra were taken for different Rayleigh numbers. From the analysis 
of the temperature histories and the power spectra, the following characteristic 
features were obtained : 
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FIGURE 8. Temperature histories and corresponding power density spectra. Numbers 1 and 2 
indicate signals from sensor locations 1 and 2 respectively, as explained in figure 2 .  

(i) I n  general, for long-time analysis, the time-dependent flow a t  any particular 
Rayleigh number shows stochastic features. A similar result for the time-dependent 
convective flow in a box of large horizontal extent has been reported by Ahlers & 
Behringer (1978a, 6 )  and discussed by Busse (1981a, 6 ) .  

(ii) Immediately beyond the threshold Rayleigh number of oscillatory flow, 
periodic or quasi-periodic motions develop (figure 8a). Some short time intervals (1 h) 
reveal periodic flow, whereas a long-time analysis (5.8 h) reveals a quasi-periodic 
oscillation. A high signal-to-noise ratio a t  the onset of oscillatory flow in the Hele-Shaw 
cell (figure 8 b )  decreases rapidly with increasing Rayleigh number. (The instrument 
noise was about K2/Hz 
at 0.1 Hz.) The energy becomes more uniformly distributed in the power spectrum. 
This is indicated by a rising bandpass noise. 

(iii) I n  the range 1.3 < Ra* < 1.64 the noise develops strongly in the spectra. 
However, when comparing short-time (1  h) and long-time (5.8 h) analysis, one and, 
in some cases, two frequencies of highest amplitude can be evaluated from both sensor 
locations and for both long- and short- time analysis (figure 8 c ,  d ) .  The power spectra 
at both sensor locations exhibit basically the same shape of bandpass noise. The 
analog temperature signals show that the amplitude of the oscillations is smaller a t  
sensor location 2, near the downward flow, than at sensor location 1, near the upward 

K2/Hz near zero frequency and decreased to about 
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flow. This supports the interferometric observation (figure 6) of the growth of the 
secondary vortices while moving from sensor location 2 to sensor location 1 .  

(iv) At even higher Rayleigh numbers, the oscillations have predominantly 
stochastic character (figure 8 e ) .  Even short-time analysis gives broadband spectra 
with no discernible single frequency. The spectrum of the temperature history from 
sensor 1 shows a bandpass noise with relative maxima, for which the centre-frequency 
can be evaluated (see $ 2  and figure 8n.  It is remarkable that the bandpass noise in 
the spectra corresponding to sensor 1 exhibits harmonic bandpass noise. In  contrast, 
the spectrum from the sensor location 2 reveals lowpass noise without maxima. Also, 
there is experimental evidence that this frequency band is bounded by a cutoff 
frequency, which increases with increasing Rayleigh number. Questions arise conc- 
erning the cause of the increasing amount of stochastic parts in the spectra and 
whether the sensor signals can be related to the visualized phenomena. 

There is no doubt that the sharply defined frequency at the onset of oscillation 
obtained from the power-density spectrum of sensor 1 is directly related to the 
repeated occurrence of the wavy perturbations in the thermal boundary layer of the 
visualized roll cell. According to the previous discussions, these perturbations are 
generated near the stagnation points of the convection cells, where sensor 2 is located. 
The vortices then move towards the upflow after passing sensor 1 .  By counting these 
visualized events during a certain time interval or measuring the time kterval 
between two events with a stop watch, the calculated frequency (figure 8 b )  could be 
confirmed. The vortices developing at one stagnation point may also a t  times move 
in a direction opposite to the usual one, i.e. penetrate into the boundary layer of the 
neighbouring roll cell, thereby introducing noise into the spectra. At very high 
Rayleigh numbers the horizontal boundary layers of each roll cell fill up with several 
vortices, which in another way contribute stochastic elements to the spectra. 

Careful observation of the real-time interferograms revealed also that the cell sizes 
of the adjacent convection rolls were not absolutely constant at a particular Rayleigh 
number. Rather, the positions of the free boundaries of the convection cells fluctuate 
around a certain mean value. The fluctuations are most pronounced in regions close 
to  the horizontal boundaries. In  other words, convection cells expand temporarily 
at the expense of a neighbouring cell or give space to it .  This effect can also be 
recognized from the interferograms in figure 6. These fluctuations appeared to have 
a regular character a t  the onset of oscillations and become more random a t  higher 
Rayleigh numbers. Visualizing the streamline pattern in a Hele-Shaw cell, Krishna- 
murti (1973) has observed similar phenomena. 

Since a rigorous nonlinear theory for the phenomenon of cell size fluctuations is, 
to our knowledge, not available, some plausible arguments for its occurrence will 
be given below. 

The experiments were performed in a Hele-Shaw cell of aspect ratio b/h = 6. This 
means that on the average there were six convection cells present in this Hele-Shaw 
cell. It is known from experiments in large containers (aspect ratio b/h  > 10) that 
in general the wavenumber decreases (cell size increases) with increasing Rayleigh 
number (see e.g. Koschmieder 1966, 1969; Willis, Deardorff & Somerville 1972). 
When the temperature difference across the layer is increased, however, the number 
of convection cells is fixed for certain temperature intervals owing to the finite extent 
of the Hele-Shaw cell. An external constraint is thereby imposed on the system of 
convection cells. The fluid flow in the cells can be considered as ‘thermally 
prestressed’ and capable of responding readily to perturbations of the main flow. 
Initiated by the momentum transfer from the secondary vortices to the basic 
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convection roll, the main flow responds to this constraint by fluctuations of the cell 
sizes. It is conjectured therefore that these fluctuations are induced by the recurrent 
perturbations in the thermal boundary layers of the different convection cells. 

I n  spite of the fact that  the structure of the convective flow is essentially 
two-dimensional and characterized by slow motion, the flow nevertheless exhibits 
typical features of turbulence. First of all, the measurements indicate that the 
temporal structures of the signals from the probes show stochastic elements. 
Furthermore, the different cell sizes at any instant of time and the multiple secondary 
instabilities in the boundary layers necessitate the presence of a spectrum of intrinsic 
lengthscales within the two-dimensional flow, 

6. Summary 
Our experiments deal with steady and unsteady two-dimensional free-convective 

flows in Hele-Shaw cells of different dimensions. Transparent materials of different 
thermal properties were employed for the confining sidewalls of the cell and the fluid. 
Real-time holographic interferometry and spectrum analysis of temperature signals 
from thermocouples were the primary measuring tools. 

Critical Rayleigh numbers for the onset of convection have been experimentally 
determined for different combinations of fluid and wall materials of the test cell. The 
experimental findings are consistent with theoretical results of Frick & Clever (1980) 
for the cases of perfectly conducting and adiabatic lateral boundaries of the Hele-Shaw 
cell. Special definitions of the Rayleigh number previously used by other authors to 
confirm the thermohydraulic analogy between Hele-Shaw convection and con- 
vection in porous media are shown to have no general application. 

Using the Rayleigh-number ratios Ra/Ra, and wavenumber ratios a/a,, bounds 
of stability for two-dimensional steady convection were experimentally determined. 
The results are in fair agreement with the theoretical predictions of Kvernvold (1979), 
Frick & Clever (1980) and Frick (1981). The predicted oscillatory flow for high 
supercritical Rayleigh numbers was observed. Furthermore, the range of wavenum- 
bers predicted by Eckhaus was confirmed in a certain range of wavenumbers and for 
moderately supercritical Rayleigh numbers. 

It has been shown by flow visualization and supplemented by similarity conside- 
rations that two-dimensional oscillatory convection in a Hele-Shaw cell is initiated 
by an instability of the thermal boundary layers at the horizontal walls. The 
periods of oscillations decrease with increasing Rayleigh numbers. Close to the onset 
of oscillations the periods obey a power law valid for unsteady convective flow in a 
saturated porous medium. For very high Rayleigh numbers the correlation approaches 
the power law valid for the limiting case of the infinite layer. 

The time-dependent phenomena have a periodic, quasi-periodic or stochastic 
behaviour. The predominant stochastic features are related to  interactions between 
neighbouring convective cells and to the frequency of vortex generation in the 
boundary layer. Although the spectra of local temperature signals exhibit stochastic 
features, the character of the basic convection mode, i.e. the two-dimensional 
convection roll, is maintained. 
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